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Abstract. Automatic crawling of Rich Internet Applications (RIAs) is a
challenge because client-side code modifies the client dynamically, fetch-
ing server-side data asynchronously. Most existing solutions model RIAs
as state machines with DOMs as states and JavaScript events execution
as transitions. This approach fails when used with “real-life”, complex
RIAs, because the size of the produced model is much too large to be
practical. In this paper, we propose a new method to crawl AJAX-based
RIAs in an efficient manner by detecting “components”, which are areas
of the DOM that are independent from each other, and by crawling each
component separately. This leads to a dramatic reduction of the required
state space for the model, without loss of content coverage. Our method
does not require prior knowledge of the RIA nor predefined definition
of components. Instead, we infer the components by observing the be-
havior of the RIA during crawling. Our experimental results show that
our method can index quickly and completely industrial RIAs that are
simply out of reach for traditional methods.

Keywords: Rich Internet Applications, Web Crawling, Web Applica-
tion Modeling

1 Introduction

In the past decade, modern web technologies such as AJAX, Flash, Silverlight,
etc. have given emergence to a new class of more responsive and interactive web
applications commonly referred to as Rich Internet Applications (RIAs). RIAs
make Web-applications more interactive and efficient by introducing client-side
computation and updates, and asynchronous communications with the server [1].
Crawling RIAs is more challenging than crawling traditional web applications
because some core characteristics of traditional web applications are violated by
RIAs. Client states no longer correspond to unique URLs as modern web tech-
nologies enable the ability to change the client state and even populate it with
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new data without changing the URL, up to the point that it is possible to have
complete complex web applications with a single URL. Moreover, JavaScript
events (from here on, called “events” ) can take the place of hyperlinks; and
unlike hyperlinks, the crawler cannot predict the outcome of an event before ex-
ecuting it. In that sense, the behavior and user interface of a RIA is more similar
to an event-driven software like a desktop software GUI than to a traditional
web application.

The problem of crawling AJAX-based RIAs has been a focus of research in the
past few years. In such RIAs, executing events can change the Document Object
Model (DOM), hence leading the RIA to a new client state, and can possibly
leaned to message exchanges with the server, changing the server state as well.
A common approach is to model a RIA as a finite state machine (FSM). In the
FSM, DOMs are represented as states and event executions are represented as
transitions. Events can lead from one DOM-state1 to another.

One simplifying assumption that is usually made is that server states are in
sync with client states. Therefore by covering all client states (i.e. DOM-states),
the crawler has also covered all server states. Based on this assumption, by ex-
ecuting each event from each DOM-state once and building a complete FSM
model from the RIA, the crawler can assume that the RIA has been entirely
covered and modeled. In order to stay in sync with server, however, the crawler
cannot jump to arbitrary DOM-states at will (e.g. by saving DOM-state in ad-
vance and restoring it when desired); instead, it must follow a sequence of events.
If the desired DOM-state is not reachable from the current DOM-state using a
chain of transitions (called a “transfer sequence”), the crawler needs to issue a
“reset” (reloading the URL of the initial page) to go to the initial DOM-state
and follow a valid transfer sequence from there. Resets are usually modelled as
special transitions from all DOM-states to the initial DOM-state. In the be-
ginning, the only known DOM-state is the initial DOM-state and all its events
are unexecuted yet. By executing an unexecuted event, the crawler discovers its
destination, which might be a known DOM-state or a new one. The event exe-
cution can then be modelled as a transition between its source and destination
DOM-states. A state machine can be represented as a directed graph. The prob-
lem of crawling a RIA is therefore that of exploring an unknown graph. At any
given time, the crawler needs to execute an unexecuted event, or use the known
portion of the graph to traverse to another DOM-state to execute one, until all
events in the graph have been executed, at which point the graph is fully uncov-
ered and crawling is done. Based on this model, different exploration strategies
(such as depth-first search, Greedy and Model-Based strategies, see Section 2)
have been suggested. Comparing different exploration strategies can be done by
comparing the number of events and resets executed during the crawl. We call
this the “exploration cost”.

1Related works in the literature commonly refer to DOM-states simply as “states”.
In this work we differentiate between “DOM-states” and what we will call “component-
states”.
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One major challenge in this field is a state space explosion: the model being
built grows exponentially in the size of the RIAs being crawled. This state space
explosion not only leads to production of a large model that is difficult to analyze,
but also makes the crawlers unable to finish in a reasonable time. Because of this
excessive running times, all DOM-based methods that have been published so far
are essentially unsuitable for real-life scenarios. These methods cannot be used
in the industrial world. Current studies use different notions of DOM equivalence
to map several DOMs to one state. These approaches usually involve applying
reduction and normalization functions on the DOM. While these approaches
have been used and tested successfully on experimental RIAs, they fail to provide
satisfactory equivalency criteria when faced with real-world large-scale RIAs.

Most of the time, this state space explosion is caused by having the same data
being displayed in different combinations, leading to large sets of new DOMs and
large state space for a small set of functionalities. In a typical RIA, it is com-
mon to encounter a new DOM-state which is simply a different combination
of already-known data (Figure 1). We call this situation new DOM-state with-
out new data. Such DOM-states should be ideally regarded as already known.
Today’s complex RIA interfaces consist of many interactive parts that are inde-
pendent from one another, and the Cartesian product of different content that
each part can show easily leads to an exponential blow-up of the number of
DOM-states. In the following, we call these independent parts components, and
each of their values component-state. A fairly intuitive example is widget-based
RIAs, in which various combination of contents that each widget can show cre-
ates a very large number of different DOM-states. Not all these DOM-states
are of interest to the crawler. A content indexing crawler, for instance, needs
to retrieve the content once and finish in a timely fashion. These “rehashed”
DOM-states only prolong crawling while providing no new data. Figure 1 pro-
vides an example. This issue is not just limited to widgets, but is present in any
independent part in RIAs down to every single popup or list item. Typical ev-
eryday websites such as Facebook, Gmail and Yahoo, and any typical RIA mail
client, enterprise portal or CMS contain dozens if not hundreds of independent
parts. Different combinations of these independent parts lead crawlers through
a seemingly endless string of new DOM-states with no new data. A human user,
on the other hand, is not confused by this issue since she views these components
as separate entities, and in fact would be surprised if the behavior of one of these
parts turns out to be dependent on another.

We observe that one major drawback inherent to all these methods is that
they model client states of RIA at the DOM level. We propose a novel method
to crawl RIAs efficiently by modeling in terms of states of individual sub-trees of
the DOM that are deemed independent, which we call components. Our method
detects independent components of RIA automatically, using the result of diffs
between DOMs. By modeling at the component level rather than at the DOM
level, the crawler is able to crawl complex RIAs completely (and in fact quickly)
while covering all the content. The resulting end-model is smaller and therefore
easier for humans to understand and for machines to analyze, while providing
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Fig. 1. Example of a new DOM-state with no new data. The DOM in (c) is only a
combination of data already present in (b) and (a), but will have a new DOM-state
in the existing methods

more information about the RIAs being modeled. As we will show in our ex-
perimental results, the method presented here is suitable to crawl and index
real-life, complex RIAs, without loss of content in our experiments, where pre-
viously published methods failed to do the same thing even on much simplified
version of the same RIAs.

The remainder of this paper is organized as follows. In Section 2, we provide
a review of related work. In Section 3 we present the general overview of our so-
lution. We first describe the model that the crawler builds, and we then describe
how the crawler builds this model and makes use of it during the crawl. Exper-
imental results and comparisons are presented in Section 4, and we conclude in
Section 5.

2 Related Works

Crawling RIAs using a state transition model has been extensively studied. Duda
et al. use a breadth-first search approach to explore RIA, assuming the ability
to cache and restore client states at will [2, 3]. In [2], they point to the state
space explosion problem caused by independent parts as an unresolved chal-
lenge. Amalfitano et al. use manual user-sessions to build a state machine [4]. In
a follow-up work, they automate their tool by using depth-first exploration [5].
Peng et al. propose using a greedy algorithm as exploration strategy that outper-
forms depth-first and breadth-first search exploration significantly [6]. We use
here the same greedy approach as exploration strategy. A different approach,
called “model-based crawling” [7], focuses on finding the clients states as soon
as possible by assuming some particular behavior from the RIAs [8,9]. The model
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used in [9] accumulates statical information about the result of previous event
executions to infer what event to execute next. All the these method suffer from
the problem of accumulating new DOM states that do no contain new data.
In [10], an approach similar to model-based crawling is used, but for sites that
have a known structure.

DynaRIA [11] provides a tool for tracing AJAX-Based application execu-
tions. It generates abstract views on the structure and run-time behavior of the
application. The generated crawling model has been used for accessibility test-
ing [12] or for generating test sequences [13]. It also also been used for modelling
native android apps [14,15] and native iOS apps [16].

All the above mentioned works use DOM-level state machines and use differ-
ent DOM equivalence criteria to guide crawling: in [17], an edit distance between
DOM-states is used. Methods based on DOM manipulations are used in [7–9,18].
These various DOM equivalence criteria do help but ultimately fail to address
completely the state space explosion problem. To alleviate this problem, in [17]
it is proposed to explore only new events that appear on a DOM after an event
execution.This limits the crawler’s ability to reach complete coverage, and does
not prevent exploring redundant data when different event execution paths lead
to the same structure (e.g. a widget frame) but in different DOMs. FeedEx [19]
extends [6] by selecting states and events to be explored based on probability to
discover new states and increase coverage. They include four factors to prioritize
the events : code coverage, navigational diversity, page structural diversity and
test model size. Surveys of RIAs crawling can be found in [20,21].

In the context of detecting independent parts, static widget detection meth-
ods such as [22] and [23], and detection of underlying source dataset [24] have
been developed. In [23], the use of patterns for detecting widgets based on static
JavaScript code analysis and interaction between widget parts is proposed. How-
ever, these methods designed only to detect widgets or source datasets, which
are a small subset of independent entities in RIAs.

3 Component-Based Crawling

3.1 Overview of our Solution

Our solution is to model RIAs at a “finer” level, using subtrees of the DOM
(called “components”) instead of modeling in terms of DOMs. By building a
state-machine at the component level, we get a better understanding of how
the RIA behaves, which helps addressing the aforementioned state explosion
problem [25]. The crawler can use this model along with its exploration strategy.
Our prototype implementation uses the greedy algorithm presented in [26] as the
exploration strategy. In this section we present a brief general overview of the
concept of components, before providing more details in the following Sections.

In a typical real-life RIA such as the one depicted in Figure 2, a given “page”
(DOM-state) contains a collection of independent entities. We call these entities
“components”. They are subtrees of the current DOM. Examples of components
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include menu bars, draggable windows in Twitter, as well as each individual
tweet, chat windows in Gmail, as well as the frame around each chat window,
the notifications drop-down and mouse-over balloons in Facebook, etc. Users
normally expect to be able to interact with each of these components indepen-
dently, without paying attention to the state of the other components on the
page. Classical crawling methods do not consider these components, and conse-
quently generate every possible combination of these components states while
building the model. Our aim is to detect these components to crawl each of
them separately. The assumption of independency between components enables
our method to “divide and conquer” the RIA to overcome state space explo-
sion without loss of coverage. We expect this assumption to hold true in almost
all real-life RIAs as it follows human user intuition. We did not encounter any
counterexamples in our investigation of real-life RIAs. If, however, there are
components on a particular RIA that affect each other, the crawler might lose
coverage of some of the content of the RIA since it does not analyze the in-
teractions between the components. In our experiments, this situation did not
occur.

Fig. 2. (a) A webpage, (b) components on the page the way a human user sees them
as entities of the page, and (c) the way the crawler sees them as subtrees of the DOM

The input of the crawler after each event execution is the DOM tree. Since
components appear as subtrees in the DOM tree, we partition the DOM into
multiple subtrees that are deemed independent of each other. Each of these sub-
trees correspond to a particular state of a component (a component-state). We
model the RIAs as a combination of independent component states instead of
assigning a DOM-state to the entire DOM. The idea of components and their as-
sociated component-states completely replace use of DOM-states in our method.
Each component has a set of possible component-states, and a component-state
of a particular component is only compared to other component-states of its
own.

As explained, in our model, at any given time, the RIA is in a set of component-
states, since it consists of different components each in its own component-state.
It is worth mentioning that the DOM is partitioned into components in a collec-
tively exhaustive and mutually exclusive manner, meaning that each XML-node
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on the DOM tree belongs to one and only one component. Modeling RIAs at
the component level as several benefits. The most obvious one is that it reduces
the state space by avoiding modeling separately every combination of compo-
nent states, including the many instances in which the combination is new but
each component state has been seen before (as depicted previously in Figure 2).
Moreover, this fine-grained view of RIA helps the crawler map the effect of event
executions more precisely, resulting in a simpler model of the RIA with fewer
states and transitions. As a result, the crawler will traverse the RIA more effi-
ciently by taking fewer steps when aiming to revisit a particular structure (such
as a text or event) in the RIA that is not present in the current DOM. The
resulting model of the RIA will also be more easily understandable by humans
because it has fewer states and transitions and the effect of each event execution
on the DOM is defined more clearly.

To illustrate the potential gain of our methods, imagine that the current
DOM is made of k independent components C1, C2, . . . , Ck. Assume that each
component Ci has C̄i components states. Using the traditional, DOM-state based
method, this will lead to

∏k
i=1 C̄i DOM-states. If in addition the components

can be moved freely on the page, this number will be repeated k! times, leading
to k!

∏k
i=1 C̄i DOM-states. This already intractable number will increase even

more of some components are repeated or if some components can be removed
from the DOM. Using our method yields only

∑k
i=1 C̄i component-states for the

same RIAs, even when the components are repeated or removed from the page.

3.2 Model Description

In our model, we partition each DOM into independent components. Each com-
ponent has its own component-state so the current DOM corresponds to a set of
component-states in the state machine. Because JavaScript events are attached
to XML nodes, each event resides in one of the component-states present in the
DOM. We call it the “owner component-state” of the event2.

3.2.1 Multistate Machine An event is represented as a transition that starts
from its owner component-state. Since the execution of the event can affect mul-
tiple components, the corresponding transition can end in multiple component-
states. Therefore, our model is a multi-state-machine. Figure 3 illustrates how
an event execution is modeled in our method versus other methods. The des-
tination component-states of a transition correspond to component-states that
were not present in the DOM, and appeared as a result of the execution of the
event.

Our model is a multistate-machine, defined as a tuple M = (A, I ,Σ , ∂) where
A is the set of component-states, I is the set of initial component-states (those
that are present in the DOM when the URL is loaded), Σ is the set of events, and
∂ : A×Σ → 2A is a function that defines the set of valid transitions. Similarly to

2For events that are not attached to an XML-node on the DOM, such as timer
events, a special global always-present component is defined as their owner component.
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Fig. 3. An event execution modeled with (a) DOM-states, and (b) component-states.
Rectangles in (b) represent DOM-states and are not used in the actual model

the classical state-transition model, ∂ is a partial function, since not all events
are available on all component states. Unlike the state-transition model, we
have a set of initial states, and executing an event can modify any number of
component-states. Our multistate-machine is resilient to shuffling components
around in a DOM, and does not store information about exact location of the
component-states in a DOM.

3.2.2 Components Definition We have mentioned that components must
be “independent” from one another. By this, we mean that the outcome of exe-
cution of an event only depends on the component-state of its owner component.
In other words, the behavior of an events in a component is independent from
the other components in the DOM and their individual component states. As
an example, the border around a widget that has minimize/close buttons is
independent of the widget itself, since it minimizes or closes regardless of the
widget that it is displaying. Therefore, the widget border and the widget itself
can be considered separate independent components. On the other hand, the
next/previous buttons around a picture frame are dependent on that picture
frame, since their outcome depends on the picture currently being shown. So
the next/previous buttons should be put in the same component as the picture
frame. Note that event executions outcome can affect any number of components
and this does not violate the constraint of independency.

Two notions are important in our definition: first, we need to specify how
we define a component, then how we capture the various component states that
component might have.

Component are identified by an XPath, which specifies the root of the sub-
tree that contains this component. In order to find a particular component in
the DOM, one should start from the document root and follow the component’s
associated XPath. The element reached is the root of the component i.e. the
component is the subtree under that element. Note that an XPath can poten-
tially map to several nodes, therefore several instances of a component can be
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present in a DOM at the same time. Since the XPath serves as an identifier
for a component, we need the XPath to be consistent throughout the RIA, i.e.
it should be able to point to the intended subtree across different DOMs of
the RIA. However, some attributes commonly used in XPath are too volatile
to be consistent throughout the RIA. Hence, we only use the “id” and “class”
attributes for each node in the XPath, and omit other predicates such as the
position predicate.

Here is how we build an XPath for an element e: we consider the path p from
the root of the DOM to e, and for each HTML element in p, we include the tag
name of the element, the id attribute if it has one, and the class attribute if it
has one.

Fig. 4. Part of a shopping website’s DOM

Figure 4 is an example of DOM for a shopping website. Individual list items
in the product list are instances of a component “product list item”. In this
example, there are two instances of this component, which is identified by the
XPath /html/body/div[@id=“dvContent”]/div[@class=“ListItem”]. But the se-
lected item in the list yields a different XPath since it is assigned a different
class attribute, [@class=“ListItemSelected”].

Each component, identified by its XPath which points at the root of the
component, can have a series of component states that are going to be uncov-
ered throughout the crawl. These states are simply the content of the subtree
found under the XPath. For efficiency reasons, we are not recording the entire
subtree for each component state. Instead, we derive a unique identifier for the
component state by hashing the content of the corresponding subtree3. In prac-
tice, the crawler keeps information on each component-state of each component
in a data structure for use by the greedy algorithm. A simplified version of the
data structure, called stateDictionary, is depicted in Table 1. In general, on any
given DOM, some components are present in the DOM and some are not. Using
the “Component Location” column, the crawler can find out which components
are present on the DOM, then use the component’s content to compute its ID.
Using the “Component-State ID” column it can look up additional info on that

3In reality, we first prune nested sub-components as explained later, and we also
perform some transformations on the subtree to detect equivalents sub-components.
See [27] for more details.
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component-state (event/transition destinations, unexecuted events, etc.), or dis-
cover that it is a new component-state.

# Component Location (XPATH) Component State-ID (Hash) Info

1 / @$J$#F@)J#403rn0f29r3m19 ....

2 /html/body/div[@id=”dvClipList”]
*&ˆ$@̂J$$P@@$#$# !$ *$ * ...
GPDFJD}{PL”!{#R$$)%$*! $#!! ...

3 /html/body/div[@id=”dvContent”]
VMLCVCPQ!#$! ()̃ IKEF) I) ...
{:$%@)(@#*GRJPGFD{#@)( ...
?”$#%*%@$)(!#HI! D}{|||#R!#! ...

Table 1. The StateDictionary.

Since components are identified by their XPath, it is possible to have nested
components, with the root of one component (identified by its XPath) failing
inside the subtree of another component. If a component contains other com-
ponents, these components should be removed from the containing component
when defining that component’s states. The pseudo-algorithm below explains
how to list all the known component states that are present in the current DOM.
Refer to [27] for more details.

Algorithm 1 Pseudo-code to find current component-states

procedure FindCurrentStates
for all xpath in stateDictionary do

ComponentInstances := go through the xpath and give the subtree
for all Instance in ComponentInstances do

for all sub-path under the current xpath do
go through the sub-path and prune the subtrees

end for
stateID := ReadContentsAndComputeStateID(instance)
Add the stateID to SetOfCurrentState

end for
end for
return SetOfCurrentStates

end procedure

Note that the only location information for component states is an XPath
to the root of the component state. Therefore, while our model is able to break
a DOM into component-states, it is not possible to reconstruct an exact DOM
using the multi-state-machine. While the resulting model of a RIA can be used
to infer an execution trace to any given component state (thus any content of
the RIA), it cannot be used to infer an execution trace to any given DOM.



Indexing RIAs Using Components-Based Crawling 11

3.3 Crawling Algorithm

As explained above, a crawling algorithm relies on an exploration strategy that
tells it which events to execute next. Several exploration strategies can be used
with our model. We explain our algorithm independently from the chosen strat-
egy (which is “greedy” in our prototype).

Generally, using the “Component Location” list in the stateDictionary, the
crawler can discover new component-states during the crawl and populate the
“Component-State ID” lists. Our proposed component discovery algorithm pop-
ulates the Component Location and Component-State ID lists incrementally
during the crawl as it observes the behavior of the RIA. The algorithm is based
on comparing the DOM tree snapshots before and after each event execution.
Every time an event is executed by the crawler, the subtree of the DOM that
has changed as a result of the event execution is considered a component.

The way we compare the DOM trees to obtain the changed subtree is defined
as follows: suppose the DOM-tree before the event execution is Tbefore and the
DOM tree after the event execution is Tafter . We traverse Tbefore using breadth-
first search. For each node x in Tbefore , we compute the path from root to x,
and find the node y in Tafter that has the same path. If x and y are different,
or have different number of children, x is considered the root of a component;
its XPath is added to the stateDictionary if not already existing, and the search
is discontinued in the subtree of x . If several such nodes y exist in Tafter , their
deepest common ancestor is used as the root of the component.

Initially, the stateDictionary contains only one component with XPath “/”.
Additional components are discovered and added to the stateDictionary as the
crawling proceeds. The algorithm is summarized in the pseudo-code below. One
important practical point to note is that the discovery of a new component
can lead to a modification of previously known component states, if the new
component is nested inside these component states. As explained before, the
new component must be pruned from the containing component states, so their
component state ID must be recomputed. It is not practical to save all component
states DOM to be able to recompute their ID when this occurs. Instead, in our
prototype we mark these component states as invalid and visit them again later
during the crawl.

4 Experimental Results

4.1 Test Cases

In order to evaluate the efficiency of our method, we have run some crawling
experiments with a number of experimental and real RIAs. We split these results
in two categories. In the first category, we have seven simple RIAs4. Two of these
are test application that we have built ourselves for testing purpose, while the
five other ones are real, but simple (or simplified) RIAs. We have also run our

4http://ssrg.eecs.uottawa.ca/testbeds.html

http://ssrg.eecs.uottawa.ca/testbeds.html
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Algorithm 2 Pseudo-code of proposed crawling algorithm

1: procedure ComponentBasedCrawl
2: for as long as crawling goes do
3: event := select next event to be executed based on the exploration strategy
4: execute (event)
5: delta := diff (dombefore , domafter )
6: xpath := getXpath (delta)
7: if stateDictionary does not contain xpath then
8: add xpath to stateDictionary
9: end if

10: resultingStates := FindCurrentStates(delta)
11: for all state in resultingState do
12: if stateDictionary does not contain state then
13: add state to stateDictionary
14: end if
15: event.destinations := resultingStates
16: end for
17: end for
18: return stateDictionary
19: end procedure

test on two real “complex” RIAs: IBM Rational Team Concert (RTC5), an agile
application life-cycle management web-based application, and MODX 6, an open
source content management system. For these two test cases, the complexity
of the web site made it impossible for us to crawl with classical method for
comparison, so we report the results separately in Section 4.3. Note that the
number of test cases is not as large as we would like, but we are faced with
the limitation of the tools we use to execute the crawl on RIAs7. We provide
the characteristics of the model built for each of these nine RAIs in table 2.
Note that these are the numbers for our component-based model, which is much
smaller than the classical DOM-based model (see [27] for more details).

Name # States # Trans. Type Name # States # Trans. Type

Bebop 119 774 Simple TestRIA 67 191 Test
Elfinder 152 3,239 Simple Altoro 87 536 Test
Periodic 365 2,019 Simple RTC 432 3,667 Complex
Clipmarks 31 377 Simple MODX 1,291 7,868 Complex
DynaTable 24 49 Simple

Table 2. Applications tested, along with their number of states and transitions in
component-based model.

5https://jazz.net/products/rational-team-concert
6http://modx.com
7We stress that the work in question is not related to the strategy described here,

but to the limitation of the available tools.

https://jazz.net/products/rational-team-concert
http://modx.com
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We have implemented all the mentioned crawling strategies in a prototype
of IBM R© Security AppScan R© Enterprise8. Each strategy is implemented as a
separate class in the same code base, so they use the same DOM equivalence
mechanism [28], the same event identification mechanism [29], and the same
embedded browser. For this reason, in Section 4.2 all strategies find the same
model for each application. We crawl each application with a given strategy ten
times and present the average of these crawls. In each crawl, the events of each
state are randomly shuffled before they are passed to the strategy. The aim here
is to eliminate influences that may be caused by exploring the events of a state
in a given order since some strategies may explore the events on a given state
sequentially.

4.2 Results on simple RIAs

This first set of test case were simple enough to allow crawling with the tra-
ditional method. We report here comparisons with the greedy exploration [6]
and the probability strategy [8], which are known to be to two most efficient
strategy for building an exhaustive model [9]. This gives us complete knowledge
of the model, allowing us to see whether our optimized strategy provides 100%
coverage.

4.2.1 Complete Exploration Cost Our first set of results are about the
“total exploration costs”, that is, the cost of finishing the crawl, expressed in
terms of number of events executed. Most results are detailed in Figure 5. As can
be seen, our component-based crawling method consistently outperforms both
probability method and the greedy method by a very wide margin. The difference
is more dramatic in RIAs that have a complex behavior, though even for the
smaller ones, TestRIA and Altoro Mutual (not shown), the cost of component-
based crawling is about 30% of the cost of the other methods. The best example
among our test cases is Bebop, which contains very few data items shown on
the page, but can sort and filter and expand/collapse those items in different
manners. Even in an instance of the RIA with only 3 items, component-based
crawling is 200 times more efficient than the other methods. This difference in
performance quickly gets even bigger in an instance of the RIA with more items,
as shown in Section 4.2.4.

4.2.2 Time Measurement Since component-based crawling requires a fair
amount of computation at each step, we also measured time in similar exper-
iments to ensure this processing overhead does not degrade the overall perfor-
mance. As can be seen on Table 3, even in terms of absolute time component-
based crawling significantly outperforms the two other methods.

8Details are available at http://ssrg.eecs.uottawa.ca/docs/prototype.pdf

Since our crawler is built on top of the architecture of a commercial product, we are
not currently able to provide open-source implementations of the strategies.

http://ssrg.eecs.uottawa.ca/docs/prototype.pdf
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Fig. 5. Comparison of exploration costs of finishing crawl for different methods

TestRIA Altor-Mutual ClipMarks Periodic Table Elfinder Bebop DynaTable

Greedy 00 : 00 : 18 00 : 00 : 34 00 : 03 : 38 01 : 13 : 08 00 : 51 : 22 01 : 25 : 11 00 : 05 : 35
Probability 00 : 00 : 11 00 : 00 : 20 00 : 02 : 50 01 : 09 : 42 00 : 49 : 00 01 : 17 : 32 00 : 04 : 51
Component-Based 00 : 00 : 06 00 : 00 : 04 00 : 00 : 13 00 : 01 : 21 00 : 08 : 21 00 : 00 : 29 00 : 00 : 06

Table 3. Time of finishing crawl for different methods (hh:mm:ss).

4.2.3 Coverage Unlike previous DOM-based methods, component-based
crawling does not guaranty complete coverage. This is because the method is
based on discovering automatically independent components, and if the method
wrongly identifies as “components” sections of the DOM that are not indepen-
dent from each other, some coverage might be lost. It is difficult to know in
general the amount of coverage that can be lost, but in the case of our seven
test cases, our method systematically reached 100% coverage. No information
was lost despite the dramatic decrease in crawling time.

4.2.4 Scalability Some of the test RIAs that we used had to be significantly
“trimmed” before they could be crawled by the traditional methods. One ex-
ample is Clipmark, which displays a number of items on the page. Although it
had initially 40 items, we had to reduce it to 3 in order to finish the crawl with
the traditional methods! When using component-based crawling, on all of our
test beds we were easily able to finish the crawl on the original data, and we
could increase the number of items beyond that without problem. We show the
data for two examples, Clipmarks on Figure 6 and Bebop on Figure 7. As can
clearly been seen on both examples, while the crawling time increases linearly
with the number of items in the page when using component-based crawling,
it grows exponentially with the DOM-based, greedy method and soon becomes
intractable. The results are the same with probability, and will necessarily be
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similar for any DOM-based crawling method, since the size of the end-model
itself increases exponentially with the number of items in the page. This shows
that component-based crawling is able to crawl and index RIAs that are simply
out of reach to any DOM-based strategy.
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Fig. 6. Scalability with Clipmarks.
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Fig. 7. Scalability with BeBop.

4.3 Results on Complex RIAs

When crawling large and complex RIAs, comparison with DOM-based methods
do not tell much, since these methods are essentially unable to crawl them.
In addition, for many of these RIAs (e.g. Facebook, Gmail etc.), the amount
of data available is very large. “Finishing” the crawl is often not a realistic
proposition. Instead, the question becomes how efficient the crawl can be as
it progresses overtime. In order to measure this, we focus on the question of
crawling for indexing, where we argue that a fair definition of “efficient” is the
ability of the crawler to keep finding new content. In our experiment, we have
measured how much the textual information accumulated increases overtime. An
efficient method will provide a steady increasing amount of information, while
an inefficient method might stop providing any new information for long period
of times (basically re-fetching known data many times). We have measured how
“efficient” component-based crawling is, by counting how many “lines” of text
(excluding html tags) are accumulated overtime. As can been seen from the
Figures 8 and 9, for both of our examples, the method provides a nice steadily
increasing line, showing that the method is efficient at fetching new information
overtime. An inefficient method would have plateaued, during which the crawl
is not adding any new data.
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Fig. 9. Progress overtime with MODX.

5 Conclusions and Future Work

This work addresses one of the most prevalent problems in the context of crawl-
ing AJAX-based RIAs: state space explosion. The presented method detects
independent components and models the RIA at component level rather than
DOM level, resulting in exponential reduction of the overall crawling complex-
ity, with minimal or no loss of data coverage. The method captures the effect
of event execution more precisely, resulting in a simpler model with fewer states
and transitions. The produced model can point to any desired data with an
event execution trace from the initial state, but cannot necessarily produce a
path to lead to any valid DOM-state. The methods has been implemented using
a greedy exploration strategy and DOM diff as automatic component discovery
algorithm. Our experimental results verify the significant performance gain of
the method while covering equal content as DOM-based methods.

This work can be improved in several areas. In particular, our future work
include devising better algorithms for component discovery. One important im-
provement can be done on detection and handling of violations: currently, we
have no effective way of recovering from a situation where components that have
been assumed to be independent turn out not to be. We simply ignore theses
violation. Although that did not impact negatively our experimental results, we
cannot be sure that this won’t be the case on every RIAs. A naive approach for
detecting violations and adapting the strategy accordingly is not particularly
difficult, but it would be too costly to be practical.
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